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PREFACE

In processes involving analog machines, digital
machines, or a combination of these, the accurate trans—
mission of information 1is of great importance. This is
sometimes aided by the application of independent quantizer
activators called dithers. The present Memorandum; written
by a RAND Corporation consultant, analyzes questions
concerning dithers and glves some quantitative evaluations
regarding them.

The author expresses thanks to Professor Charles
Susskind, who read the manuscript and made editorial

suggestions.



e o S ot man et oo ot

This Memorandum treats’the linearization of the
highly inmportant multistep quantizer nonlinearity by the
application of independent quantizer activat
dithers. For the dithered quantizer acting (as it often
does) in conjunction with a low-pass or band-pass filter,
numerical answers are given for the first time to the
questions: (a) What is the equivalent quantizer gain?
(b) What upper bounds does the dither place upon the
maximun deviation from linearity? (c) How does one
determine, for glven specifications; a dither amplitude
so that the system is optimally dithered? Such informa—

sinusoid and sawtooth) makes 1t possible to effect analog—
to-digital-to-analog conversion (to name one application)
with no apparent loss of information even when the quanti-
zation 1s rough. The properties of the sinusoldal and
sawtooth waves as quantiéer linearizers are developed in
detail; it is shown that the sawtooth is superior to the

more popular sinusoid in most Important respects.
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1.  INTRODUGCTION

The operation of amplitude quantization, which
transforms continuous-amplitude variables into variables
whose amplitudes can have only discrete levels, is being
ineorporated in a growing number of control and computer
processes. In genéral any periodie quantization type of
nonlinearity can be repreésented by the stalrcase
characteristic of Fig. 1; but the ordinary rounding=off

process, vhich this paper treats, requires that the

quantizer characteristic be made square and symmetrical,
i.e., with quanta size g = 4 = 4, and blas h = v = 0.

In the present paper, such rounding-off transducers (for
example, those that round off to the nearest integer, with
q = 1) will simply be called "quantizers," and their
presence will be indicated by the symbol Q. Note that’it
1s possible to transform the quantizer nonlinearity inte
the more general nonlinearity of Fig. 1 if the linear
operations of summation and pure amplificatlon are allowed
both to precede and to follow the quantization operation
1tself [1, 2]. Therefore the results obtained here can be
readily extended to other staircase honlinearities.

Although it is evident that digital computers must

entail amplitude quantization, many other nonlinear processes

that are apparently unrelated to quantization are in fact

~



Fig. 1
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reduciblé to processes that are linear except for a quantizer.
For example, a pulse=frequency modulator, which emits
i1dentical narrow pulses at a rate proportional to its

input, is equivalent to & transducer that subjects its

input to integration; quantization, and differentiation,

in that order.

Amplitude quantization is now a popular means of
preserving sighal accuracy in the face of transmission
noise. Moreover, the use of digital computers in otherwise
nonquantizing systems 1is growing with the versatility and
sophistication of the computer sciences [3].

The stimulation of such quantizing systems by
externally generated signals (dithers) holds great promise
[1] as & means of doing away with the two main disadvantages
of quantization: (a) the information loss inherent in the
rounding=off process, and (b) the possibility of limit-cycle
oscillation. At the same time the advantages of digital
computation and digital data transmission can be fully
exploited.

The idea of linearizing highly nonlinear transducers
by means of an externally generated signal 1s not a new
one. McColl [4] and Iozier [5] both recommend that a
sinusoidal dither be applied to a motor drive system
incorporating a relay, and Loeb [6] has suggested that
any nonlinear system can be linearized in this manner.

Other workers have been concerned with the problems of



stability {7] and noise in amplitude-quantizing sampled-data
systems [8, 9]. Although the effects of dither on system
linearization have been described quantitatively for a
number of nonlinearities, for the quantizer they are here
described for the first time. Some of the effects of dither
on the quantizer as an operator on the statistical properties
of 1ts inputs (such as thelr mean square) have been

reported [1, 2, and 10). Such information is important

for other reasons, but it leaves the question of linearity

open:;

2. . PROBLEM FORMULATION

We now formulate the present problem, as schematized
in Fig. 2.

A. The following information is given:

a. Transfer functions A and C may be linear or
nonlinear; and sampled data or time continuous, but they
are otherwise unspecified. Hence we may have A = 1, C = 0.

b. Transfer function B is linear and has either a
low-pass or band-pass frequency characteristic. Also, if
B is sampled data, the sampling rate i1s high relative to
the frequencies of oq(t), so that for purposes of analysis
B may be approximated by a continuous transfer function,

¢. The dither may be injected at the quantizer
input (as in Fig. 2) or, if that is not possible and A is

linear, at the system input.



|'ssvdanve

¥0

SSYIMOT

3

3LSAS .

g

gyt

4IHLI

Y,

QNON .

lEuo —

N
¢,




d. The notation is:
1q'(t)'= nondither quantizer input,
a ()
o(8)
iq(t)
Oq(t)

injected dither,

total quantizer input = 1qf(t) + dg(t),

quantizer output = 1q(t) rounded off to

the nearest quantum.

B:. The designer is to select a dither type so that with
regard to its input-output relationship the dithered
system behaves as if the dither were not present

(i.e., as £ d,(t) = 0) and the quantizer had a pure gain
of unity. The quantizer 1s then sald to be linearized.
C. 'The designer works under the following restrictions:

a. The instrumentation for a dither source should not
appreciably increase the complexity of the system.

b. Even though it 1s sometimes advantageous from a
theoretical viewpoint to employ dither amplitudes that
range over many quanta, for reasons of economy the
designer must not allow the dither to inecrease the dynamic
range of the quantizer appreciably.
quantizer input and output 1s undesirable in the sense that
it can represent an information loss. For this reason it
is called a “rounding-off error" or "quantization noise"

ny(t) [11], with ny(t) = o (t) - 1,(t), The maximum

: a

magnitudes of n, oceur for values of 1y which are halfway

q
between adjacent quanta levels. Hence we have -q/2 < ny < q/2,
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Dither, when used effectively, does not cause n, to vanish.
Rather, high-fréquency dither is employed to drive the
nolse-frequency speetrum to regions where the noise is
absorbed by B together with the dither. That is, of the
total quantizer outputrqq & 1q q t By’ only the first
term appears (as a result of its lylng within the passband

of B) at the system output in appreciable magnitudes.

We shall comment only in passing on the eradication
of the bounded periodic oscillations or limit cycles to
whiéh quantizing systems are subject; merely to say that
these oscillations are brought under control at the same
time that thée linearity of the quantizer 1s improved by
dithering. The problem of controlling the amplitude and
frequency of such limit cycles by means of dither (often

referred to as signal stabilization) has received

considerable atténtion since the publication of Oldenburger's

exploratory paper {12].

The usefulness of a random dither having a Gaussian
probabllity density [2, 13] as well as that of a sinusoidal
dither [14, 15] in bringing limit eycles under control has
been investigated. A means of contrelling limit-eycle
amplitudes by the manipulation of gain parameters within
the loop has also been worked out [{16]. Only one of these
studies [2] treats the multistep quantizer, which 1s our
present concern, but they do consider a switch or limiter

nonlinearity, which is precisely what the multistep non-
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linearity is reduced to when the system operates in a
low-amplitude limit-cycle mode.

Before discussing the action of dither, we shall
indicate why other methods of quantizer linearization may
be less attractive.

Suppose, for example, that one wishes to reduce a
maximum round-off error from 0.5 to 0.1 units without
recourse to dither. This requires that q = 1 is replaced
by @ = 0.2 units. Such a c¢hange is equivalent to

subjecting i _{t) to an amplification of S:and.oq(ﬁ) to an

q
amplification of 1/5; q = 1 is retained. It is evident
that the dynamic range of the quantizer has been increased
five=fold, requiring & greater capacity. Should a new
quantizer with q = 0.2 units be available, it will
certainly be more complex than the original one. Of course
such an exchange of quantizers may be physically impossible
in the first place because the operatlon of quantization
may not be carried out in a separate component; it has

been i1solated in the schematic only for the purposes of
analysis. Moreover, regardless of how small g is made, the
quantizer continues to exhibit an inactive region or dead
q@ = 1q < q/2.

On the other hand, 1t is possible to achieve perfect

zone for =q/2 < i

linearization economically by employing a certain low-

amplitude dither, as we shall demonstrate.



In the past, the term "dither" has become almost
synonomous with "sinusoidal dither", so popular was this
wave type as a linearizer. More récently a periodic,
zero-average sawtoobh dither has been recommended [1].
M@%eOVer, it has been suggested [2] that a randem dither
such as a Gaussian one may be suitable for linearizing
the quantizer. Even if the Gaussian dither should be
subjected to preliminary linear, high-pass filtering,
however, there is at best a nonunity probabllity that the
dither will produce acceptable linearization. Alse; there
is a need of overdesigning to compensate for the relatively
high probability of the dither amplitude being in the
neighborhood of zero. The Gaussian dither dees, however;
possess certaln properties that greatly simplify an
analysis of the statistical properties of dithered systems;
for a discussion of this point, see [lo].

It is interesting to note that a comparison of the
sinusoidal, sawtooth, and Gaussian dithers has been carried
out experimentally [17] on a simple contactor (which is an
amplitude-saturating quantizer) system, with the result
that perfect linearization of the system response was
achieved by both the sawtooth and sinusoid, as one would
expect. On the other hand, a Gaussian dither whiech had
been high-pass filtered produced less satisfactory results;

although this random dither did help to arrest large-
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amplitude iimit-cycle oscillations, the system output
sti11) showed a random Jjitter.

At the present time two periodic ditheprs, the sinusoid
and the sawtooth, appear to be the most suitable dither
types for effecting linearization: the sinusoid because
it 1s so easy to generate and inject, and the sSawtooth
because it is unique as a dither in béing able to bring
about compléete linearization even when 1ts peak-to-peak

amplitude is only one quantum.
A: Sinuseidal Dither

Suppose that a sinusoidal dither 4 (t) is injected
86 that

(1) 1q(t) = iq“(c) + mg sin w.

d

where m is a dimenslonless quantity giving the dither
amplitude in quanta, and wy = 2w f;
radian frequency. Then the system output will approximate

= 2m/T4 is the dither

the tlme average

T,
o d
(2) 0galt) = (1/25) [ og(t)as

&
qa g

for the situation in which the fregquency spectrum of iq’
lies in the center of the passband of B relative to OF)

(for B bandpass), or is much nearer to the origin (for B
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low-pass) than Wys Leees iq' is unattenuated relative

to d_(t). One can create such a situation by employing
sufficiently high dither frequencles. Strietly speaking,
the system output will then be proportional (rather than

equal) to o, _*', but this cirecumstance has no bearing on

qa
linearization, which 1is the problem at hand.

The plots of«eqa

vs‘iq* appearing in Fig. 3 are the
result\of‘digitalec@mpucer'simulation for the situation
depicted schematically in that figure. In Table I,

044/ 15 given analytically for three ranges of m. The
task of furnishing a complete characteristic of o, vs i

1
aa q

for each value of m is simplified considerably by virtue
of certaln properties of the characteristic.

(1) Periodicity. Because the quantizer characteristic

(3) Ogallq' * 1na) = oy, (1,1) + ng

for all m, where n is an integer.

(2) Symmetry. Because d_(t) = d_(Ty - t), we have

(4) Oqallq") = (n - a - og, ln - 1)q - 11]

for 0.5a(n - 2) <1,¢ <0.5¢(n - 1) for all m, where n is

an lnteger.

S o e vt e e g e &



AVERAGE QUANTIZER OUTPUT

0gqalt)

| mq sinwyt

Ta% qalt)

“os5¢  aq
i'q(t)= NONDITHER QUANTIZER INPUT

Fig. 3
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Table I

/¢ IN CLOSED FORM FOR SINUSOIDAL DITHER

1]>=4

J_n Yo om,
-_1 TN = . s 4N fia 0
sin - (0.5 - 1 " Y/m 1,

~ sin T (0.5 + in‘)/mlland

-1t /md

f“o<s<o

{ o 5 < s > < 1 5 n

ﬁ 0. 5 <5< 1. 5

Q 0.5<¢8 < 1.5 |1 5|

[

1 0.5¢s <151

1IN

EAY
=

(37N

1<s<2
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(3) Oddness. By letting n take on negative values,
1t follows directly from property (2) that

(5)  ogalty) = = ogul-14")

for all m.

(4) Completeness. It follows from repeated

application of properties (1) and (2) that, for all m,
0qallq') 1s completely specified if it is specified for
ﬁhe interval 0 < iq < 0.5q.

Properties (1) and (2) are evident in Fig. 3, where
the over-all quantizer gain 0QG = oy, (1,') /1,' is seen to
approach unity as m increases from O to 5 in three
increments.

of great importance to the engineer is the maximum
exeursion from linearity,

(6) MEL(m) = 13" = 0g,(1q" M oy

which 18 found for any glven value of m by allowing i_' to

3
q
vary freely. The smallest positive maximizing value

of 3 Vv = ¢ t ) - 1.1 ] | I . ] y
of 1q = iqm lies in the range 0 < 1Qm < 0.5q, because

of the symmetry property; i.e., we have

(7) [gn' = 0qaltqn')} = la - —_— 0gal® = 1511



has been generated for © < m £ 6 (Fig. 4).

B. Optimal Sinusoidal Dither
Use of Fig. 4 makes it possible to selve the

following practical design problems:

bound must be placed upon the Quantizer's dynamic range;

and consequently om m. What is the value of m = mbpt

tthMM%sMhmﬁrmewmﬁnﬂthmgm

VLM . ;79
max

(b) Specifications call for an upper bound on MEL.

What is the smallest value of m=m_ . for whiech MEL <€ MEL 9
What is the smallest value of m m@pt for whic¢h MEL;§~MELmax'

It is apparent that, because the derivative 4(MEL)/dm
My, Observe
that the maxima of MEL(m) (in addition to the one at m = 0)

can be positive; in general we have mg o # 1
occur at m £ 0.15 + 0.5n, where integer n > 1, i.e., at
m = 0.65, 1.15, 1.65, :.. . The minima of MEL(m) occur
at m £ 0.45 + 0.5(n-1), where n 1is a positive integer,
1.e., the minima occur at m = 0.45, 0.95, 1.45, ...
Employing the above information, the designer proceeds
to solve problem (a) in the following fashion:
(1) Determine approximately the maximum swing of
iq'(t) 1f the quantizer were to be replaced by a pure galn
of unity.

(2) Comparing this swing to the bound on the quantizer's

operating range, obtain the value of m ...

(3) On Fig. %, construct the vertical line m =M
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:{l;i:;q:(‘t:')—quq; @t )lqu

0.2q}

f

0:tq |1t

.05q e ‘::"J‘ _' e 7 (

MEL , MAXIMUM EXCURSION FROM LINEARITY

0.02q —
0

- SINUSOIDAL DITHER ZERO_TO PEAK AMPLITUDE
QUANTA SIZE q

Fig.4
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(%) Take as m_

., that value of m < m_.__ which
pt = “max

max
minimizes MEL.
{5) Replace (theoretically) the unity gain quantizer
by one having MEL = MEL1mEm and repeat steps (2) through
b [e]

(4) until two consecutive 1terations yield the same value

for m Usually one iteration will suffice.

opt”
As an illustrative exanple, suppose that the 1q* swing
g £ 0-99 and that the quantizer's

operating range is -1.5q < 1q < 1.5q. Theﬂ'mmax = 0.6,

= 0.068q: If iteration yields

for step (1) is -q < 1

m . = 0.45 and MEL,
opt Lm_mOpt

max > 0.45, the design 1s complete, and the MEL has been
reduced to less than 1/7 of 1ts undithered value (0:5¢)
with the quantization grain unchanged.

The solution to problem (b), where MEL, ., 18 specified,
requires that thé line MEL = MELy be constructed on
Fig. 4. Proceéeding along this line from left to right,

choose as m the value of m at the first intersection

opt
with the MEL-vs-m curve. For example, if MELmax = 0.05q,

then mg,¢ = 0.95.

C. Sawtooth Dither
Consider now the sawtooth‘dither‘dA(t), periodic
with period Td’ such that

(8) 4,(t) = mq [1 - (2t/T4)] for 0 <t < T, .

U B
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The ﬁqa-vs-iq':eharacterisﬁme for the sawtooth

{Fig. 5) exhibits the properties of periodicity, symmetry;
oddriess, and completene§s ascribed above to the sinusoid.
Likewise the MEL-vs-m characteristic (Fig. 6) can be

obtained for 0 < i_.' < 0.5q. The sawtooth also commands

qm
additional properties:
(1) The sawtooth 0q@ £ 0qu, [the subscripts _ (or , )

denote that the dither used is sinusoidal (or sawtooth)]
is unity with‘MEL%\= 0 for all m = 0.5n, where n is a
positive integer. For a proof, see Appendilx I.

(2) For MEL # 0 and 0 < 1.' < 0.5, the o  =ve-1,°

qa
plot is composed of two straight-line segments of different
slope passing through (0,0) and (0.5q, 0.54), respectively.
Therefore the point P at which they intersect,

(1qm an' £ MEL), completely specifies the plot. To

find P for any m, note that 1,

value of 1,' Which causes the range of oq(t) to increase

or decrease (whichever c¢alls for the smallest 1q') by

1, 1

' 1s the smallest positive

one -quantum frem its range for i ' = O.

1
a

Consequently construction of the o, _-vs-1

&
qa q
characteristic 1s quick and simple: For any value of

m=m; <6, consult Fig. 6 for the corresponding value

of MEL\=‘MEL1. Strike out the integral part of m,
retaining the part R to the right of the deeimal point.
If 0 <R < 0.5, draw a straight line from the origin to

point P at [(0.5 - R)a, (0.5 - R)q —‘MELII. Next draw a
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0gq (1)

i:'q.(t)= NONDITHER QUANTIZER INPUT

Flg 5




()-0qq (t) lﬁmax

b q
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|

EXCURSION FROM LINEARITY:=

MEL , MAXIMUM

(@]}
A
L

O“‘q , =

0.0lq =
Olq -

ZEROS b L& & & & I S N |

SAWTOOTH DITHER ZERO TO PEAK AMPLITUDE

 QUANTA SIZE q

Fig. 6
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line from P to the point (0.5, 0.5¢). If 0.5 <R < 1.0,
locate point P at [(R - 0.5)a, (R - 0.5)q + MELy} and
proceed as above.

In Fig. 5, the curves for m = 0.25 and m = 1.25 have
corresponding MEL's of 0.25q and 0.05¢, respectively, and
their P points are located at {0.25¢, 0) and (0.25q, 0.2q),
respectively.

A comparably simple technique for the construction
of the sinusoidal c¢haracteristic is not availlable.

For 0 < m < 0:5, we have 0QG, = 0QG_ = O within the
dead band -(0.5 - mjq < 1! < (0.5 = m)q. However, with
0 <m<0.5and (0.5 - m)gq < 1," < (0.5 + m)q, we obtain
0QG,, # 0Q&, = 0.5/m

For the sawtooth, i1f m lies in the range
0.5(n - 1) <m < 0.5n, where integer n > 1, then
lgm' = (051 = m)a for n odd and 4.t = [m -~ 0.5(n - 1)]q

o 1!

for n even. Therefore by finding oqa(;q

1q' = 1gqp' for the range of m in question, and setting

of m is found.

', m), setting

gn'] = 0, the MEL, maximizing value

For example, for 0.5 <m < 1.0 we get iqml

Consulting Table 2 and solving, we find that

(9) d/dm [o__(1

qa*“qm‘ qm

for m = 1/42, which is the value of m at the maximum.

= (m - 0.5)q.

r"m) -1 ]= d/ﬂm [1-5'—‘m - (015/m)}q
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In a similar fashion, weé find that the maxima of MELA for
the ranges 1.0 <m < 1.5 and 1.5 < m < 2.0 occur at

V3, respectively. For our purposes we

V3/2 and m =
¢an approximate by saying that the maxima of MEL, oceur
at m = 0, 0.707, 1.225, 1.73, and at m = 0.25 + 0.5(n + 3),

where n is a positive integer.

D. Optimal Sawtooth Dither

A comparison of the plots for MEL_ and MEL; (Figs. 4
and 6) shows that not only is the sawtooth capable of
perfect linearization, as has been mentioned, but that
the sequence S, of the maxima of MEL, (SA = 0.5q, 0.0854q,
0.051q, 0.0354; 0.028a, :..) cenverges to zerc much more
rapidly than the sequence S, of the maxima of MEL_(S_ =
0.5q, 0.17d, 0.125q, 0.105q; 0.094q, :..). Also, for all
m, we have MEL, (m) < MEL_ (m), the equality holding only
for 0 £ m < 0.45. Therefore if the design procedure out-
lined for the sinusoidal dither is applied to the sawtooth

for a given m___ > 0.45, then the sawtooth will be found

max

to yield a smaller MEL than the sinusoid. Similarly, if
the specifications call for a certain MEL < 0.068q =
MEL  (m = 0.45), the design can be effected with a smaller
value of m if a sawtooth rather than a sinusoid is employed.
Even though theory shows the sawteoth to be clearly

superior to the sinusold if values of m __ > 0.45 are

ax
permitted, practical considerations may obviate use of

the sawtooth. As was mentioned earlier, injection of
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dither directly into thé quantizer may be physically
impessible; dither may have to be injected together with
the system input: Whereas dN(%% suffers only attermuation
and phase shift as a result of operation 4 (if & in Fig. 2
1s linear), dA(t) so injected does not in general retain
its sawteoth form. ©Only by performing the operation
A-inverse (if this is possible) on dﬁ£t) prier to its
injection in combination with the normal system input can
one overcome this problem. Note that A-inverse is defined

as that operation on any time function, say h(t), which

In preceding portions of the present discussion, the

normalized dither amplitude m was subject to the constraint
that the quantizer must not be driven into saturation. As
certaln advantages acerue from employing dithers that are
not subject to this constraint (i.e,, saturating dithers),
1%t 1s worthwhile to develop these properties numerieally,
as we shall now do for the sawtooth dither.

Consider a quantizer that saturates at its kth (k = 1,
2, ...) guanta level so that 1@q1 = kq for all ﬁ;q$ > (k - 0.5)q.
Suppose that, of the class of'séWEooth dithers, Wé wish to
employ one that is theoretically capable of effecting

perfect linearization, i.e., one for which m = 0.5n, where
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n 1s a positive integer. Then the quantizer acting in
conjunction with a low-pass or band-pass filter exhibits
the following properties (see Appendix II for their
derivation):

(i) For n = 1 (1.¢., m = 0.5), we have Oqa = g’
everywhere in the linearized interval 1,' < kq. Outside
of this interval; we have $0qa1 = kq. Iet the quantizer's
dynamic gain QDG 4 :'ia‘dqaf/a‘iqf! , wherever this derivative

exists. Hence for n = 1,

(10) (a) ap6

1 for Liq'f < kq ,

(11) (b) @DG

o

O for liq 'l > kq .

(2) Generalizing, for any integer n satisfying

1 <n < 2k, where m = 0.5n, we have

(12)  (a) Qo6 = 1 for [1.'] < [k + 0.5(1 - n)la ,

]

(13) (b) QDG = (n - 1)/n for {k + 0.5(1 - n)lq

A

|‘1q'1_li < [k + 0.5(3 - n)la ,

e et s o
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(14) QDG = (n = 2)/n for [k + 0.5(3 - n)lq

< 14t < [k + 0.5(5 - n)la ,

i/n for [k + 0.5(n - 3)q] < [k + 0.5(n - 1))a ,

o
n

(15)

(16) Qpe = 0 for {1} > [k + 0.5(n - 1)]q .

(3) Let the maximum excursion from linearity when

iq* is allowed to range from zero to the saturation edge,
where QDG becomes 0, be called MEL, ; 1.e.,

MEL, (m = 0.5n) = {@qa(i.@) = 4 oy Where the

T,
q "max

2 9 = 0.5(n = 1)1la .
g = lgn' * [k + 0.5(n = 1)]q .

We find, for any integer n satisfying 1 < n £ 2k, that

N>

maximizing value of 1

MEL, (m = 0.5n) = 0.5(n = 1)q.

(4) We conclude from property (2) that the sensitive
interval G, i.e., the interval for which QDG # O, can grow
only at the expense of the linear interval L (i.e., the
interval for which QDG = 1), because L + G = 4kq = twice
the range which the quantizer output shows with no dither
present.

As a consequence of properties (3) and (4), the
engineer must compromise in the light of his particular
performance specifications. He must decide whether to

design for (i) maximum L = 2kq = minimum G, and minimum




T T R R e,

MEL;, = 0 by choosing m = 0.5; (11) maximum ¢ = (4k - 1)q,

minimum L = ¢, and maximumlMELﬁs(OWSn) = (k - 0.5)4;
or (1ii) intermediate values of L, @, and MEI%S {1f x > 1).
The nature of this design trade-off can be seen in
Fig. 7; whevre Oqa is plotted against positive iq* for
four values of m = 0.5n, and where the undithered
quantizerwoutpat\oq saturates at + 5q¢ for all 14 2 + (k - 0.5)q
(1.e., k = 5)
(a) For n = &, m = 0.5, we have maximum L = 10q =

R

(b) For n = 10, we have maximum G

199, minimum L = g
and maxtimin MELy(0.5n) = MELy () = 4.5;

(¢) For n = 2, we have L = 9q, ¢ = 1lg, and
MEL) (1) = 0.5q; and

I:

(d) For n = 5, we have L = 5q, G = 14%q, and
MEL, (2.5) = 2q.

It is apparent from Fig. 7 that linearity here is a
"eurrency" that can be "spent" to enlarge one's sensitive
"frontage" G.

There 18 no theoreticecal 1limit on how large

G (and MEL, ) can be made if one removes the condition

1 < n < 2k that has been imposed so as to make L > q.

5. _CONCLUSIONS

If the raw quantizer output signal undergoes either
a low-pass or a band-pass filtering (as it often does

naturally) on its course to the system output, it is

st e o s e
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possible in theory to alter the equivalent over-all quantizer

galn 0QG so that its deviation from & pure gain of unity
is as small as is desired, if a high frequenecy dither can
be injected. For a sinusoidal dither d_, perfect
linearization is approached in the limit as its normalized
zero-=to=peak afiplitude m becomes large. A Sawtooth dither
d, is capable, however, of effecting perfect linearization
for values of m which are integral multiples of 1/2.

The OQG characteristic for either d or 4, is
completely specified if it is specified for nondither
quantizer inputs which range one half a quantum in a
amplitude, because of the periodicity and symmetry
properties that the characteristic exhibits. The sawtooth
0QG, 0QG,, being composed entirely of straight-line segments,
is easily constructed, as is evident from the rules that
we have presented for 1ts construction.
specified for any m by comparing the 0QG curve with the 45°
line and finding the supremum of the absolute value of the
difference between the two curves. It was found that the
sinusoidal and sawtooth MEL(m) curves, i.e., the MEL (m)
and‘MELA(m) curves, and the extent of the corresponding
dead-band regions are identieal if O <m < 0.45; but in
the region 0.45 <'m < 0.5 the two curves part company
because MEL (m) rises from its first minimum at m = 0.45

while MELAfcontinues to descend to its first minimum at

PR VPP

S e e i O € e
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m = 0.5; MEL.{0.45) = MEL(0.45) = 0.068q and MEL {0.5) =
0.105q but MELA(@“5) = 0.

Practiealréonsidénations place a bound on the maximum
value which m 1s permitted to take; call this m. .

Then for O < my., < 0.45, d_and d, are equally effective

max
as linearizers. But form > 0.45, d, 1s preferable
because MEL, < MEL for m > 0.45. Similarly, if the
design e¢alls for an MEL < 0.068q then the sawtooth should
be used. By employlng the curves which have been
presented, a method for finding the optimal dither amplitude
(for either d or d,) in the face of design constraints
has been proposed.

There is an advantage in employing a sawtooth 1f the
dither amplitude is subject to slow amplitude drifting
(e.g., because of ambient temperature variations) as one
notes in the following example. Suppose that the design
specifications call for a reduction of MEL to one tenth
of 1ts value without dither (i.e., from 0.5q to 0.05q),
and that a sinusoldal dither has been decided upon because
a sinusoidal signal generator is avallable. Then the

smallest amplitude range for which this is pessible is

m=0.95 + 1%. On the other hand, a low amplltude saw-

tooth dither with m = 0.5 + 10% will also meet the
specifications. The advantages of employing the smaller
m with 1ts greater tolerance should be apparent.

We have also conslidered the use of sawtooth dithers
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with amplitudes §o large as to6 drive the quantizer into
saturation (1t saturates at the + kth quantization levels)
as a means of exteriding the sensitive range of quantizer
operation at the expense of incurring greater values of

MEL. It was shown that it is possible to retain an interval
of unity 0QG arcund the origin of length q while the
sensitive region of the quantizer is extended to

2lk + 0.5q (2k - 1)Jq. At the same time the MEL rises

to 0.5(2k - 1)q. The 0QG characteristie for varying

degrees of saturatlion was also developed.



[

=33=

Appendix I

PROOF ‘THAT THE SAWTOOTH DITHER IS A PERFECT LINEARIZER
__IFm = n/2, WHERE n IS A POSITIVE INTEGER

et 1 ! é‘iq*/q. Then 1t is necessary to prove that
O4a = ai ' only for 0 <1 ! < 0.5, because of the symmetry
and periodieclty properties that have beern mentioned in
Sec¢tion 3-A. For odd and even n, the maxinum and miniium
values that\@q(t)‘eam take on for a finlte time interval
with 1 ! so‘bbuﬁdéd‘afe the following:

Parity of n | Maximum o (t) | Minimum o (t)

| nq/2

odd | a(n + 1)/2

A. Evén n. For n even, we have (2n + 1)/2 levels
of oq(t), Examine Qq(t) for the interval 0 < t < Ty,

noting that the duration for which o, remains at any level

q
remains constant as iq' i8 waried sléwly for all levels

except the extreme Qnés, the maximum and minimumn. For the
nonextreme levels, the interval iS‘T@/n seconds. For the
- nq/2 level, the interval is Wy = (Ty/n)(0.5 - 1 ') seconds.

For the nq/2 level, the interval is Wp = Ty/n - Wy =
(Ty/n)(0.5 + 1 ') seconds. Therefore we have

(17) o

qa = (0-5na/T4)(Wy - W,)

(0.5nq/T4){Ty/n)(0.5 + L' - 0.5+ 1 )

=aiy! =1y
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B. 0dd n. For n odd, we alsoe have (2n + 1)}/2 levels

ofwaq(t); and the duration is again @d/n seconds for all
levels except those at q(n + 1)/2 and = q(n - 1)/2.

Let W é‘duﬁa@ion of the lowest lewvel and w2 4 guration

1 2
of the highest level. Then we have wl + WE =‘Td/ﬁ, but

Wy = (Td/n)(l - in')a Therefore we obtaiﬁ\w2‘='Tdin'/h,

(18) %qa = (a/T4) {(n - 1)/2‘fTa/n - Wl [(n+ 1)/2] WQ}

Substitution ylelds

(19) 0qy = AL, = 14"
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Appendix II

DERIVATION OF THE PROPERTIES ASCRIBED
TO SATURATING SAWTOOTH DITHER

The objeéct of this appendix is the derivation of
properties (1), (2), and (3) which have been ascribed
to the saturating sawtooth dither in Sec. 4.

With regard to property (1), observe that it is a
special case of property (2) with n = 1.

Property (2) is composed of two parts, (a) and (b),
which will now be derived:

(a) Quantizer saturation does not oceur unless the
peak of 4 satisfies iq = iq‘ + 0:5nq > (k + 0:5)q.
Then (a) applies to nonsaturating values of i,q (as proven
in Appendix I), and the linearization is perfect, so that
QG = 1.
(b) Examine o (t) for the interval 0 < ¢ < Ty. Call
the interval of léhgth q for which Eq. (13) applies
the saturating interval 1 = SI,, the interval for which
Eq. (1%) applies SI,, and so on. There will ben =1
such intervals for which ODG # O, because only at the
lower edge of SI do all values of iq(t) lie in the
saturation region; i.e., we have iq(ﬁ) > (k + 0.5)q.

For SI,, the minimum level of o (t) is (k —n + l)q,
and it has a duration ‘Wl = (Td/n) 1 - f('iq"' + B)/q)
seconds, where B = [k + 0.5(n — 1)7q. The maximum level

of o (t) is, of course, the saturation level kq, and it
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nasva'auratioﬁ\o£“wé\i {1+ (;q' — B)/q) seconds. The

duratiom of the levels lying between these two extremes

d0 not change for any saturating interval. <Consequently

these levels can be ignored in solving for
{20) DG = (n — 1)/n do. /31 ¢
(20) Qpe = (n —1)/n 3o, /31,

= @/Ty Ek(awé/aiqf) + (k —n = 1)(aw1/aiqj)1.

FoerIg, the minimum level of oq(t) is (k = n + 2)g, and

its duration is

(21) w i%ﬂﬂi%%fa3e®m3%wmm

1
the maximum level is again kq, and 1ts duration is

(22) W, = Ty/n [2 = (14" = B = q)/q] seconds.

Therefore we have

(23) QDG = /Ty Ek(awe/aiq*) + (k —n + 2)(3W1/31q‘)] =

For the jth quantizing interval 1 ¢ J < n, the minimum

level is (k — n + j)q, and its duration is

n— 2

e e it e
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(24) wlri'ma/h {1 _;<}qf - B =3~ 1)@}/@] sec. and

’awl/ B“i’qi = — 1/q.

The maximum level is kq, and its duration is

W /1t = 1/g.

Therefore we obtain

(26) apo = Ty/mla/Tgilk/a = (k — n + §)/q) = B4,

Property (3) follows directly from the fact that QDG
decreases monotonically, with the result that the divergence
between the line o _ =1 ' and the o (i ')=vs=i !
etween the line oy, = 1 ' and the O4al a )=vs iy
characteristic increases monotonically. The maximum
magnitude of this divergence, i1.e., MEL, is obtained by

setting 1_' equal to its greatest permissible value under

q
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Erpata Sheet for RM=3271-PR

REMOVING THE NOISE FROM THE QUANTIZATION PROCESS
BY DITHERING: LINEARIZATION

rman

1. Page 10, equation {2) should read:

o =ity [
%a ° (I/T’d)d' |

2. Page 15, l2th line from the bottom of the page should
reads

occur at m = 0. 15 + 0.5n, where integer n 2 1, 1.e.; at

3. Page 35, second line from the bottom of page, the
right square bracket is not complete. The right
bracket should be completed and the expression
should read:

eseses Bm [k 4+ 0, 5(n - 1) lq.

The following is a 1ist of captions for the figures.

Fig. 1 = The Periodic Quaritization Type of Nonilinearity
Fig. 2 = Problem Formulation
Flg. 3 = Over-all Quantizer Gain for Sinuscidal Dither

Fig. 4 ~ Maximum gxcursion from Linearity for Sinusoidal
Dither

Fig. 5 — Over-all Quantizer Gain for Sawtooth Dither
Fig. 6 - Maximum Excursion from Iinearity for Sawtooth

Fig. T~ Over-%i%hQuantizer Gain for a Saturating Sawtooth
er




